

B.C.A. (Honours) & B.C.A. (Honours with Research) (Semester - 1 and Semester - 2) Saurashtra University To be effective from June – 2023

CS-08: DATA STRUCTURE USING C LANGUAGE

Objectives:

- To provide the knowledge of basic data structures and their implementations.
- To understand importance of data structures in context of writing efficient programs.
- To develop skills to apply appropriate data structures in problem solving

Prerequisites:

- Computer Programming Knowledge
- Fundamental knowledge of C Programming

Sr. No.	Topic	Detail
1	Algorithm Analysis	 The analysis of algorithm. Time and space complexities. Asymptotic notation. Classes of algorithm. Big-Oh Notation Big-Omega Notation
	File Handling	 Concept of data files File handling Use of file handling functions fopen, fclose, fprintf, fscanf, getw, putw, fseek, ftell, rewind ,freopen, remove, rename, feof, ferror I/O operations Command line arguments
2	Sorting and Searching	 Bubble sorting Insertion sorting Quick sorting Bucket sorting Merge sorting Selection sorting Shell sorting Basic searching technique: Index searching, Sequential searching, Binary searching
3	Introduction To data Structure	Primitive and simple structures Linear and nonlinear structures file organization.
	Elementary Data Structure	 Stack Definition Operations on stack

B.C.A. (Honours) & B.C.A. (Honours with Research) (Semester - 1 and Semester - 2)

Saurashtra University

To be effective from June – 2023

	I	To be effective from June 2023
		 Implementation of stacks using arrays Function to insert an element into the stack Function to delete an element from the stack Function to display the items Recursion and stacks Evaluation of expressions using stacks Postfix expressions Prefix expression Queue Introduction Array implementation of queues Function to insert an element into the queue Function to delete an element from the queue Circular queue Function for deletion from circular queue Circular queue with array implementation Deques Priority queues
4	Linked List & Implementation	 Applications of the linked lists Types of Linked Lists Singly Linked List Doubly linked list Header Linked List Circular Linked List Implementation using Singly Linked List, Doubly Linked List and Circular Singly Linked List Insertion of a node at the beginning Insertion of a node at the end Insertion of a node after a specified node Traversing the entire linked list Deletion of a node from linked list Updating of a specific node Implementation of reversing of Singly Linked List Implementation of reversing of Singly Linked List
5	Tree	 Objectives Properties of a tree Binary trees Properties of binary trees Implementation Traversals of a binary tree

B.C.A. (Honours) & B.C.A. (Honours with Research) (Semester - 1 and Semester - 2)

Saurashtra University

To be effective from June - 2023

		In order traversal
		Post order traversal
		Preorder traversal
		Binary search trees (bst)
		 Insertion in bst
		 Deletion of a node
		 Search for a key in bst
		Height balanced tree
		B-tree Algorithm
		 Insertion, Deletion
		Adjacency matrix and adjacency lists
		Graph traversal
		 Depth First Search (DFS)
	Cranh	 Implementation
	Graph	 Breadth First Search (BFS)
		 Implementation
		Shortest path problem
		Minimal spanning tree

Seminar - 5 Lectures
Expert Talk - 5 Lectures
Test - 5 Lectures
Total Lectures 60 + 15 = 75

Reference Books:

1. Data Structure through C/C++ Author: Tennaunbuam.

Let us C Author : Kanitkar.
 Pointer in C Author : Kanitkar.

4. Data and File Structure Author: Trembley & Sorrenson.

Course Outcome:

- Able to Understand basic data structures and their implementations.
- Able to Understand importance of data structures in context of writing efficient programs.
- Able to Develop skills to apply appropriate data structures in problem solving
- Able to Explore tree and graph data structure

Additional Topics to be taught during the semester – 2 (Not to be asked in examination):

• Case studies of data structure