

CS-13: COMPUTER ORGANIZATION AND ARCHITECTURE

Objectives:

- Understand how logic circuits and boolean algebra forms as the basics of digital computer.
- Demonstrate the building up of Sequential and Combinational logic from basic gates

Prerequisites:

- General Knowledge of Computer

Unit No.	Topic	Detail
1	Digital Logic Circuits	<ul style="list-style-type: none"> • Logic Gates <ul style="list-style-type: none"> ▪ AND,OR,NOT,NAND,NOR,XOR, Exclusive NOR gates • Boolean Algebra <ul style="list-style-type: none"> ▪ Boolean algebra? ▪ Boolean variable and Boolean function (Analog and Digital Signals) ▪ Truth table ▪ Postulates ▪ Theorem related to postulates ▪ Simplified Boolean function using postulates and draw logical diagram of simplified function ▪ Simplified Boolean function using Karnaugh map method with DON'T CARE condition • Sequential And Combinational Circuits <ul style="list-style-type: none"> ▪ Clock pulses ▪ Combinational circuit, sequential circuit and adder • Flip Flops <ul style="list-style-type: none"> ▪ SR, Clocked SR, D, JK, JK – Master Slave, T • Universal Gate
2	Central Processing Unit	<ul style="list-style-type: none"> • Introduction Of CPU • Major component of CPU • General Register Organization <ul style="list-style-type: none"> ▪ control word ▪ Accumulator Register • Stack Organization <ul style="list-style-type: none"> ▪ Register stack ▪ Memory stack ▪ Polish notation and reverse polish notation

		<ul style="list-style-type: none">• Arithmetic And Logic Unit<ul style="list-style-type: none">▪ Block diagram of ALU• Interrupts
3	Input-Output Organization	<ul style="list-style-type: none">• Memory buses• Block diagram and function• Data Bus, Address Bus and Control lines• Input Output Buses• Concept of input output interface• Input Out Processor (IOP)• Direct Memory Access• DMA controller

Student seminar - 5 Lectures

Expert Talk - 5 Lectures

Students Test - 5 Lectures

Total Lectures 60 + 15 = 75

Reference Books:

1. Computer System Architecture – By Morris Mano (PHI).
2. Digital Logic And Computer Design – By Morris Mano.
3. Digital Computer Electronics – By Malvino And Leach.

Course Outcome:

- Able to Understand logic circuits and boolean algebra forms as the basics of digital computer.
- Able to Explore the building up of Sequential and Combinational logic from basic gates
- Able to explore digital components
- Able to Understand data representation

Hands On (Not to be asked in examination):

- Instruction Formats - Simulator Base Program

Additional Topics to be taught during the semester-2 (Not to be asked in examination):

Following tools should be used to train students.

- Simulator 8051
- Using Trainer kit